						real.	mass.
1.	Un elemento chimico ha nucleoni. Il nucleo del se				7 elettroni e 107		
	1.a) Scrivi i simboli di entrambi gli isotopi con i corrispondenti numeri protonici e nucleonici						
		107 •		109 🛦			/2x1
		¹⁰⁷ Ag		$^{109}_{47}$ Ag			121
	1.b) Qual è il numero o carica dell'involucro elett				a +2? Calcola la		
	$N(e^-)=80$						/1
	Q _{involucro elettronico (Ph}	$(2^{2+}) = -1.28 \cdot 10^{-17} \text{ C}$					/1
							4
2.	Per quattro elementi che elementi sono indicati i vindicati i vind	A 0,93 ondi alle seguenti dor	B 1,61 mande.	C 2,19	D 3,16		
	A						/1
	2.b) Quale tipo di legame	Quale tipo di legame chimico si forma tra gli atomi degli elementi A e D?					
	ionico						/1
	2.c) Con i contrassegni densità elettronica nel le			ementi indica la d	listribuzione della		
	C_{Q^+}						/1
							3

PUNTI TOTALI DI PAGINA 1 : 7

CF₄

apolare

109.5°

PUNTEGGIO

- 3. La molecola di un gas stabile è rappresentata dalla formula XZ4 nella quale X e Z sono elementi chimici sconosciuti. La molecola contiene 42 protoni, e entrambi gli elementi chimici si trovano nello stesso periodo.
 - 3.a) Scrivi la formula molecolare del gas.

/1

3.b) La molecola del gas sconosciuto è polare o apolare?

3.c) Quant'è l'angolo di valenza nella molecola?

/1

3.d) Riporta quali sono le interrazioni intermolecolari dominanti tra le molecole del gas indicato.

Forze di London, forze di van der Waalsove, dipolo indotto - interazioni dipolo indotto

/1

- 4. La frazione di massa del cloruro di potassio in una soluzione acquosa satura a 20 °C è 0,252.
 - **4.a)** Quale massa di cloruro di potassio bisogna sciogliere in 250 cm³ di acqua ($\rho(H_2O) = 1$ g cm⁻³) per ottenere una soluzione satura?

$$m(H_2O) = 250 g$$

 $m(KCl) = 84, 2 g$

$$0,252 = \frac{m(KCl)}{m(KCl) + 250 g}$$

4.b) Lo scioglimento del cloruro di potassio in acqua è un processo endotermico. A quale temperatura la solubilità del cloruro di potassio in acqua è maggiore, a 20 °C oppure a 40 °C?

/1

Risposta:

La solubilità del cloruro di potassio in acqua è maggiore a 40 °C.

3

- Nella serie di sostanze indicate cerchia quella che ha:
 - 5.a) il punto di ebollizione più basso

HF(HCI,)HBr, HI

5.b) il punto di fusione più basso

NaCl, MgO, (KCl,) Al₂O₃

/3x1

5.c) le interrazioni intermolecolari più deboli

 (C_2H_6) CH $_3$ CH $_2$ OH, CH $_3$ COOH, CH $_3$ COOCH $_3$

3

PUNTI TOTALI DI PAGINA 2:

PUNTEGGIO

6. L'ossido di carbonio(II) si forma nella combustione incompleta del carbonio e dei composti del carbonio. È molto velenoso perché si lega all'emoglobina e impedisce il legame con l'ossigeno. La frazione di volume massima consentita dell'ossido di carbonio(II) che non provoca conseguenze dannose è 3 · 10⁻⁵.

6.a) Disegna la formula di struttura di Lewis della molecola di ossido di carbonio(II).

:c≡o:

/1

6.b) In una stanza di dimensioni 5,0 m x 5,0 m x 3,0 m si sono liberati 3,0 dm³ di ossido di carbonio(II). Calcola la frazione di volume del gas velenoso nella stanza. La quantità di ossido di carbonio(II) liberata sarà dannosa per la salute? Procedimento:

$$\varphi(\text{CO}) = \frac{V(\text{CO})}{V_{\text{Stanza}}} = \frac{3.0 \cdot 10^{-3} \text{ m}^3}{75 \text{ m}^3} = 4,0 \cdot 10^{-5}$$
$$\varphi(\text{CO}) = 4 \cdot 10^{-3} \%$$

/1

Sarà dannoso per la salute.

/1

6.c) Con l'equazione della reazione chimica è rappresentata la combustione incompleta di un idrocarburo Y nella quale si formano ossido di carbonio(II) e acqua.

$$2 \ \textbf{Y} + 5 \ O_2(g) \longrightarrow 4 \ CO(g) + 6 \ H_2O(\ell).$$

Quale degli idrocarburi elencati corrisponde all'equazione della reazione chimica indicata?

A) metano

C) etene

D) etino

/1

4

Con l'analisi chimica della molecola di caffeina è stata determinata la massa totale degli atomi di idrogeno che è 1,674 · 10⁻²⁶ kg, il numero di atomi di carbonio è due volte maggiore al numero di atomi dell'azoto, e il numero di atomi di azoto è due volte maggiore del numero di atomi di ossigeno. La massa di una molecola di caffeina è 3,225 · 10⁻²⁵ kg. Determina la formula molecolare della caffeina.

Procedimento:

$$N(H) = \frac{m_{\text{totale}}(H)}{A_{\text{r}}(H) \cdot u} = 10$$

$$M_r(\text{caffeina}) = \frac{m_f(\text{caffeina})}{u} = 194,2$$

/

$$M_r(\text{caffeina}) = N(C) \cdot A_r(C) + 10 \cdot A_r(H) + N(N) \cdot A_r(N) + N(O) \cdot A_r(O)$$

/4x

$$M_{\rm r}$$
(caffeina) = $2 \cdot N(\rm N) \cdot A_{\rm r}(\rm C) + 10 \cdot A_{\rm r}(\rm H) + + N(\rm N) \cdot A_{\rm r}(\rm N) + \frac{N(\rm N)}{2} \cdot A_{\rm r}(\rm O)$
 $N(\rm N) = 4$ $N(\rm O) = 2$ $N(\rm C) = 8$ Formula moleculare: $C_8H_{10}N_4O_2$

0,5

$$N(N) = 4$$
 $N(O) = 2$ $N(C) = 0$ Formula moleculare. $C_8 n_{10} n_4 O_2$

0,5

Nota: Se l'alunno è arrivato alla soluzione corretta non scrivendo tutti i passaggi indicati, però ha un procedimento visibile e corretto assegnare il punteggio pieno (numero totale di punti).

4

PUNTI TOTALI DI PAGINA 3 :

PUNTEGGIO

8. I concimi minerali dolomitici si utilizzano per diminuire l'acidità, ma anche per migliorare la struttura del suolo. In un sacco di concime minerale si trova un miscuglio di carbonato di calcio e di magnesio. Determina la frazione di massa degli ioni carbonato in questo miscuglio, se 100 kg di miscuglio contengono il 40,0 % di carbonato di calcio, mentre il resto è carbonato di magnesio.

Procedimento:

$$m(CaCO_3) = 40.0 \text{ kg}$$
 $m(MgCO_3) = 60.0 \text{ kg}$

$$M_r(CaCO_3) = 100,09$$
 $M_r(MgCO_3) = 84,32$ $M_r(CO_3^{2-}) = 60,01$

$$m_1(CO_3^{2-}) = 40,0 \text{ kg} \cdot \frac{60,01}{100.09} = 24,0 \text{ kg}$$
 $m_2(CO_3^{2-}) = 60,0 \text{ kg} \cdot \frac{60,01}{84.32} = 42,7 \text{ kg}$

$$m_{\text{totale}}(\text{CO}_3^{2-}) = 66,7 \text{ kg}$$

$$w(CO_3^{2-}) = \frac{66.7 \, kg}{100 \, kg} = 0,667$$

Nota: Se l'alunno è arrivato alla soluzione corretta non scrivendo tutti i passaggi indicati, però ha un procedimento visibile e corretto assegnare il punteggio pieno (numero totale di punti).

9. Numerosi naturalisti hanno dato il loro contributo allo sviluppo della chimica e della scienza in generale. Alcuni di loro sono: Jöns Jacob Berzelius, Vladimir Prelog, John Dalton, Antoine Laurent Lavoisier, Linus Pauling, e Friedrich Wöhler.

Nella tabella sono indicate alcune loro scoperte. Ad ogni scoperta associa il nome dello scienziato di cui è merito.

1. Il padre della chimica moderna con numerose scoperte, tra le quali si evidenzia la legge della conservazione della massa.	Antoine Laurent Lavoisier	
2. Ha studiato e sintetizzato composti naturali, ha studiato le reazioni e la stereochimica delle molecole organiche.	Vladimir Prelog	
3. Ha proposto la prima teoria atomica accettabile – le sostanze sono costituite da piccole particelle materiali (atomi) che durante una reazione chimica si dividono e non scompaiono.	John Dalton.	
4. Ha ideato i simboli chimici e ha pubblicato le prime tabelle complete e precise delle masse atomiche relative.	Jöns Jacob Berzelius	
5. È stato il primo a sintetizzare in laboratorio un composto organico da uno inorganico e con questo ha smentitola teoria del vitalismo.	Friedrich Wöhler	
6. Ha studiato la natura del legame chimico, l'elettronegatività, l'ibridizzazione, la struttura delle macromolecole, gli effetti curativi della vitamina C.	Linus Pauling	

PUNTI TOTALI DI PAGINA 4:

3

/3x1

4

/6x 0,5

PUNTEGGIO

10. I sali sono composti ionici che si possono ottenere in diversi modi.

- **10.a)** Utilizzando l'equazione della reazione chimica (con le indicazioni degli stati di aggregazione) mostra l'ottenimento del sale indicato con il metodo assegnato.
- A) Metanoato di sodio: con la neutralizzazione.

 $NaOH(aq) + HCOOH(aq) \longrightarrow HCOONa(aq) + H₂O(\ell)$

/4x 1,5

B) Solfuro di ferro(II):con la sintesi a partire dagli elementi.

 $Fe(s) + S(s) \longrightarrow FeS(s)$

C) Nitrato di rame(II): con la reazione dell'ossido di metallo con l'acido.

 $CuO(s) + 2 HNO_3(aq) \longrightarrow Cu(NO_3)_2(aq) + H_2O(\ell)$

D) Solfato di alluminio: con la reazione tra metallo e acido.

2 Al(s) + 3 $H_2SO_4(aq) \longrightarrow Al_2(SO_4)_3(aq) + 3 H_2(q)$

Nota: 1 punto per l'equazione della reazione chimica scritta correttamente e 0,5 punti per gli stat di aggregazione corretti.

10.b) Disegna la formula di struttura di Lewis dell'anione di ogni sale dell'esercizio 10.a).

H-C, ...

 $\left[\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \end{array}\right]^{2-}$

/4x1

10.c) Indica la struttura spaziale, secondo la teoria VSEPR, per lo ione nitrato e per lo ione solfato.

lone nitrato:

planare

(accettare anche trigonale planare, triangolare planare)

lone solfato:

/1

tetraedrica

12

PUNTI TOTALI DI PAGINA 5 :

12

PUNTEGGIO

11. Tramite il cibo assumiamo numerosi composti organici naturali che rappresentano un'importante fonte di energia, materiale da costruzione per l'organismo, regolano il metabolismo e accelerano le reazioni. Possiamo dimostrare la presenza di alcuni di loro con dei reattivi caratteristici. Completa la tabella inserendo accanto a ogni composto organico naturale il reattivo tipico per dimostrarne la presenza.

Alimento	Composto organico naturale	Reattivo per la dimostrazione della presenza o reazione caratteristica
Patata	Amido	Soluzione di iodio in soluzione acquosa di ioduro di potassio (soluzione di Lugol), tintura di iodio
Albume dell'uovo	Proteine	Reazione del biureto
Succo di mela	Glucosio	Reattivo di Fehling, reattivo di Trommer, reattivo di Tollens

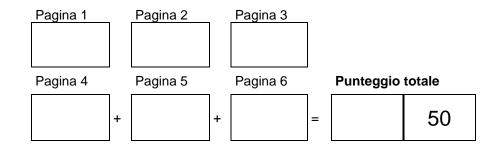
/3x1

3

12. Le proteine sono formate da amminoacidi. Una molecola dell'amminoacido essenziale istidina contiene tre atomi di azoto. In 6,220 g di istidina ci sono 7,240 · 10²² atomi di azoto. Qual è la massa molecolare relativa dell'istidina?

Procedimento:

$$\frac{1}{3} = \frac{N(\text{istidina})}{7,24 \cdot 10^{22}}$$
 $N(\text{istidina}) = 2,413 \cdot 10^{22}$


$$m_{\rm f}({
m histidin}) = {m({
m campione})\over N({
m istidina})} = 2,578\cdot 10^{-22}{
m g}$$

$$M_{\rm r}({\rm istidina}) = \frac{m_{\rm f}({\rm istidina})}{u} = 155,2$$

/1

Nota: Se l'alunno è arrivato alla soluzione corretta non scrivendo tutti i passaggi indicati, però ha un procedimento visibile e corretto assegnare il punteggio pieno (numero totale di punti).

3

PUNTI TOTALI DI PAGINA 6:

